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A B S T R A C T

Indoor localization is essential for robotic navigation by using different sensors on board. Specifically, visual
localization with a single camera is a great challenge in highly symmetric environments (e.g. offices, hospitals
or residences), where appearance patterns are repetitive and captures from different locations provide very
similar images. To overcome this issue, in this paper, we present a method that integrates multisensory
information from an RGB-D camera, a LiDAR and motor encoders. Our approach simultaneously utilizes spatial
consistency from a reference topological map and temporal consistency from time-series observations. Inspired
by human cognitive perception, we define a two layered topological architecture that encompasses both
coarse information of object distributions and structural information with some metric references. Categories
of common objects in the environments, such as fire extinguishers or doors, are used as natural beacons.
We evaluated our approach in two real-world buildings based on a multi-aisle structure with corridors of
very similar appearance. Results demonstrated accurate localization despite the high level of symmetry of the
scenario, and how ambiguity was significantly reduced as the agent progressed along its trajectory.
1. Introduction

Mobile autonomous robots need to manage information about their
workspace to perform meaningful activities. In recent years, they have
attracted a great deal of interest due to their numerous applications in
different sectors such as transport, logistics or healthcare. In contrast to
outdoor robotics (Li et al., 2017), indoor robotics mainly needs to over-
come the lack of reliable position. It is caused by the non-availability
of GPS reception as well as the usually smaller error margins enforced
by the smaller size of the working area.

The location of the robot, also known as its pose, is represented by a
position and orientation in a coordinate frame. Autonomous navigation
relies on a good localization system dealing with the kidnapped robot
problem and relocating the robot in case of pose tracking failure.
Robotic localization involves two steps: global localization (GL) and
local pose tracking (re-localization). The GL problem aims to estimate
where a robot is placed somewhere in the environment and has to
localize itself from scratch. It is different from the local localization
problem, which tracks the agent over time based on GL information and

Abbreviations: GL, Global localization; ROS, Robot Operating System; AMCL, Adaptive Monte Carlo localization; GT, Ground truth; SVM, Support vector
machine; AEL, Accumulative error localization; CBIR, Content-based image retrieval; MSE, Mean squared error; SSIM, Structural similarity index measure
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assumes GL is known a priori. The assumption of GL initialization by
the user has led most research to focus on the re-localization problem.

As a standard framework, the Robot Operating System ROS
(Maruyama et al., 2016; Quigley et al., 2009) includes the package
amcl, which allows the robot to be able to self-relocate on a reference
map but it requires a previous initialization. It is based on an Adaptive
Monte Carlo Localization (AMCL) (Dellaert et al., 1999) model. This
approach works by comparing LiDAR measurements to the readings
that would be expected for each of the poses, according to a refer-
ence map. This algorithm generates random samples (particles) of the
current state from a priori probability. These particles are updated
according to sensor measurements. The AMCL algorithm has been
widely used in the literature with different variations: particle swarm
optimization (Zhang et al., 2019), integration of text information and
laser scan data (Text-MCL) (Ge et al., 2022), and a dual-timescale
approach for highly dynamic environments (Valencia et al., 2014).
However, the conventional AMCL method may be sufficient for robot
localization in confined environments (Talwar & Jung, 2019) but,
due to the high number of required particles, it is hardly scalable
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Fig. 1. Examples of highly symmetrical views in a building with numerous corridors. (a) Our own LOLA robotic platform. (b, c, d, e) Views at the entrances of four corridors
captured with our own agent.
and not easily applicable in symmetric environments with repetitive
perceptions (Zhang et al., 2019). Thus, we highlight the difficulties of
global localization of AMCL in office corridors using solely data from
distance sensors without considering visual information.

One of the greatest challenges for a mobile platform is to locate itself
and navigate in complex indoor scenarios that present repetitive struc-
tures. Indoor environments generally consist of many rooms connected
by corridors. Building geometry in corridor spaces presents, in general,
a repeated pattern that makes it difficult to obtain specific information
for global localization. This is often the case for public buildings such
as hospitals, residences or care centers, where assistance platforms
operate. The use of scattered beacons in these scenarios becomes unaf-
fordable since it requires having a great number of landmarks and it is
not always possible in large-scale buildings.

Fig. 1 provides an illustration of the structural symmetry of the
scenarios under consideration, showcasing comparable views taken
by our robot at the entrances to several hallways within the same
structure. The existence and/or distribution of specific objects can help
us distinguish between the views taken from various positions, which
in this case exhibit a significant degree of similarity. The placement
and presence of distinguishing elements, like a light box or a fire
extinguisher, can serve to clear up confusion and distinguish between
two identical hallways. For this reason, we emphasize the use of
particular objects as natural identifiers and present a multimodal data-
based localization approach that combines the perception of structural
and semantic information. Stated differently, our approach is motivated
by the idea of emulating cognitive perception, i.e., attempting to de-
termine the agent’s location by tracking the locations of objects and
motions along the trajectory.

Motivated by this challenge, we propose an analytic localization
method that utilizes spatial and temporal consistency using a reference
map and time-series observations from the agent. More specifically, it
is based on two intuitive ideas: (1) Spatial consistency can be analyzed
to determine the similarities between sensor observation blocks and
sections of a reference map, and (2) Temporal consistency is integrated
over time using robot time-series observations. The robot is equipped
with an RGB-D camera, a 2D LiDAR and the motor encoders. Fusion of
these sources of information allows for reducing the level of ambiguity
in the location. Moreover, trajectories not consistent with movement
patterns are discarded.

In our approach, the system relies on a topological map as a graph-
based representation of the environment defined by a set of nodes,
where link edges denote environment connectivity or reachability. We
formulate the GL problem as the estimation of the node closest to
the robot’s position and direction of movement within the last edge
2

(edge orientation). Fig. 2 depicts the flowchart of our model, which
consists of three main components: 2D Object Position Estimation,
Node Detection and Topological Localization. The 2D Object Position
Estimation module is able to extract the topological distribution of
objects whereas the Node Detection stage identifies the type of zone in
which the robot is moving. In more detail, this second module allows
us to subdivide the scenario into sections corresponding to topological
edges. The merging of both outputs (Object Position Estimation and
Node Detection) generates the topological structure of the explored
route. Finally, this output feeds the Topological Localization module,
which estimates the location by comparing both spatial and temporal
consistency between the topological structure generated in the route
and a reference map. Further details are provided in Section 3.

The contributions of this work can be summarized as follows:

1. A new two-level structure is proposed to describe complex sym-
metrical environments. It includes a coarse topological approach
with some metric references and comprises multisensory inte-
gration: visual information from the camera, depth information
from a 2D LiDAR and motion information from encoders.

2. A novel analytic model for global localization has been proposed
and implemented based on evaluating spatial and temporal con-
sistency. It models the consistency between the readings from
sensors and the ground truth (GT) combinations of routes. This
contribution allows us to estimate the localization without the
need of a manual initialization.

3. A visual object detector has been trained for the detection of
characteristic objects in indoor environments, such as doors,
windows and fire extinguishers. These objects are used as natural
beacons, so no intervention is needed in the scenario.

4. A supervised learning model has been developed for the classi-
fication of nodes, which makes it possible to identify the type
of zone in which the agent is located. Our system is able to
distinguish whether the agent is in a corridor, at the end of a
corridor, or at a junction of corridors.

Experimental results test the capabilities of the system with two
real-world environments. The first presents an approximate square area
of 100 × 100 meters and is organized in a ring around 16 corridors
with a rate of free zones in occupancy map equal to 6.98%. It supposes
a great challenge for localization due to its high level of symmetry.
The second environment corresponds to a medium-sized building with
a lower level of symmetry than the first. The results in both scenarios
support the generalization capacity of our algorithm.

The rest of the manuscript is structured as follows. We present a

brief literature review on existing methods for indoor localization in
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Fig. 2. Model overview of multisensory integration based topological localization. It consists of three components: 2D Object Position Estimation, Node Detection and Topological
Localization.
Section 2. Section 3 presents the core of this work. It describes the
architecture of our algorithm and the analytic model to evaluate spatial
and temporal consistency. Section 4 describes the experimental setup
details and experiments. Finally, the last section concludes this paper
and suggests some future research lines.

2. Related work

The objective of indoor localization is to accurately estimate the
location of an agent concerning a reference map. As explained in the
introduction, the loss of GPS signal indoors due to the NLOS (Non-
line-of-sight) effect involves a challenge. As a consequence, different
technologies have been proposed in the scientific community in past
years to find a solution to this problem: Bluetooth (Ayyalasomayajula
et al., 2018), WiFi (Hernández et al., 2021; Luo et al., 2017), UWB
(Ultra Wide Band) (Ridolfi et al., 2016), RFID (Diallo et al., 2019),
magnetic field (Chen et al., 2021) or ultrasonic systems (Mannay et al.,
2020), among others. Wireless localization based on WiFi is the most
common due to its high availability and high accuracy. However, in
general, signal-based methods have two primary limitations: (1) They
need to have the corresponding infrastructure, such as routers, beacons,
RFID tags, or ultrasound receivers; and (2) They can only output the
location but not the view angle.

As a complementary alternative in localization tasks, the robotics
community has also considered visual-based localization methods.
Image-based algorithms do not need extra infrastructure to support
indoor localization. Moreover, image-based localization methods can
estimate location linking information about what is being seen in
a scene to what exists in a digital information model. The most
common techniques are inspired by the following approaches: image
retrieval (Wolf et al., 2005), structure-based localization methods (Sat-
tler et al., 2017; Taira et al., 2018) and learning-based localization
methods (Walch et al., 2016). Image retrieval methods build a spatial
repository during mapping and determine the image that is most similar
to the queried one for localization. Since the queried image is not
likely to have identical poses as the reference images, the system
can only provide a rough estimation. Structure-based localization is
based on hand-crafted or deep learning-based features (Arandjelovic
et al., 2015) to estimate 2D-to −3D matches between features in a
given image and points in 3D models. The camera pose is estimated
from the correspondence by using epipolar geometry. Major limita-
tions are related to camera intrinsic differences, which can provoke
failures even when a small subset of mismatched features exist, and
it requires a high computational burden. Finally, deep learning-based
3

localization methods have emerged and benefited from deep-learning
(DL) approaches. These algorithms either predict matches for pose
estimation or directly regress the camera pose such as PoseNet (Kendall
et al., 2015), PoseNet2 (Kendall & Cipolla, 2017) and VlocNet (Valada
et al., 2018). However, these methods are still susceptible to differ-
ent lighting conditions, are not scalable for large environments and
generate ambiguity because two different locations can provide similar
characteristics.

From the point of view of robotics, while classical approaches
(Thrun et al., 2005) decoupled the tasks of SLAM (simultaneous lo-
calization and mapping), many models in recent years have proposed
solutions that directly map sensor data to robot actions (Savinov et al.,
2018; Ye et al., 2018). Most methods integrate reinforcement learning
(RL) techniques with DL models for visual perception, e.g. Chang et al.
(2020). Interestingly, the resulting action policy learns navigational pri-
ors that depend on the contextual scene, e.g. kitchen or bedroom. The
main limitations of most previous models are as follows: (1) they are
not tested on real scenarios, i.e., the experimental evaluation is mainly
done on different virtual environments where the deep RL approaches
are trained on Szot et al. (2021); and (2) in consequence they exhibit a
low generalization capacity, making it difficult to use a trained model
to navigate in a different scenario to the one used for training. For these
reasons, these approaches exhibit limited capabilities to generalize to
new environments or to plan long trajectories. In consequence, these
works are hardly applicable to the environments of interest in our work.

Departing from the works above, we follow the traditional ap-
proach of decoupling localization from planning and execution. While
end-to-end tend to struggle in large-scale environments, topological
solutions have a rich history in classical literature (Kuipers & Byun,
1991; Tomatis et al., 2001). These approaches build a graph using
trained models that can predict whether two images are close (Savinov
et al., 2018), or regress the number of steps required to move from
one image to another (Shah et al., 2021). However, few of these
works propose graph update strategies that improve lifelong navigation
performance over time. Researchers have also incorporated insights
from classical literature into neural structures. Thus, a modular model
is proposed in Chaplot et al. (2020), where each node is associated
with a panoramic image. Graph localization requires comparing each
node image with the given image based on a ResNet18 encoder (He
et al., 2016) and a Connection model. Some similarities can be found
in Wiyatno et al. (2021), where a convolutional neural network (CNN)
takes two images and predicts the probability of reachability from
one image to the other and their relative transformation. Even when

our work builds upon the existing literature on topological maps, the
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resemblance is only at high-level graph structure. In terms of our
representation, the structure is not only relying on visual information
but also on structural information. In contrast to Chen et al. (2019),
where they work with one of the three generic node types: room,
hallway and open space, we define nodes as points with path changes.
Hence, nodes encode the types of possible trajectories in our proposal.

Most of these previous works exhibit important limitations since
they are not tested on real scenarios of large scale, but in simulated
environments or real-world environments of medium or small size.
Therefore, our work focuses on models of localization in complex and
highly symmetrical environments using multisensorial integration. To
overcome the limitations of image retrieval methods, which are based
on the use of only a single image; it seems reasonable to use time-
series observations from perceptual localization. There is a connection
between our work and the general purpose of Niwa et al. (2022). In this
manuscript, the architecture is based on a recurrent-type graph neural
network and it requires a sim2real transfer. However, our goal is to
provide an accurate localization without the need for a long training
process and the difficulties associated with transferring the learned
skills to reality.

3. System description

In this section, we describe the proposed method for robot self-
localization in complex symmetrical environments based on a topo-
logical map. The topological map encodes spatial information about
the environment, which is represented as a directed graph denoted by
𝐺 = (𝑁,𝐸), where 𝑁 =

{

𝑛𝑖
}

𝑖=1∶𝐿 is the set of 𝐿 nodes. Each node is
defined as a location with a relevant change of trajectory that can be
encoded using a LiDAR signature. Also, 𝐸 =

{

(𝑠𝑖, 𝑡𝑖)
}

𝑖=1∶𝐵 is a tuple of
𝐵 edges, where each edge 𝑒𝑖 =

(

𝑠𝑖, 𝑡𝑖
)

is connected from source node 𝑠𝑖
to target node 𝑡𝑖, being both nodes considered as adjacent. Each edge
stores a coarse distribution of objects (relative location of characteristic
objects concerning the source node) from RGB-D camera observations
and the relative pose between two adjacent nodes by adding encoder
information. Assuming that in the existing topological map there are 𝐵
edges

{

𝑒1, 𝑒2,… , 𝑒𝐵
}

, the localization problem is raised as the ability
of the system to find the edge and the heading direction based on the
sensory observations. Since there are two directions in the 𝐵 edges,
there are 2𝐵 possible locations.

As mentioned in the introduction, baseline localization methods
have difficulty accurately localizing the self-position when multiple
similar sensorial measurements are contained in the topological map.
To solve this problem, we propose in Section 3.3 a novel self-localization
system based on the analysis of spatial and temporal consistency of sen-
sor observations concerning a reference map. Previously, Sections 3.1
and 3.2 describe, respectively, our multisensory approach defining the
environment. Because of the input to various modules of the system,
as illustrated in Fig. 2, the operating frequency is not the same for
all modules depending on requirements and computational load. More
specifically, the Node Detection stage, which is based on LiDAR scans
for delimiting the end of edges, requires a very low computational bur-
den and is capable of working with frequencies similar to the scan rate
(5–15 Hz). On the other hand, the Object Position Estimation module
is triggered after the initialization of an edge and stops when the next
node is detected and, finally, the localization step is only triggered
when an edge is completed. That is why, in our approach, localization
consists of determining the node closest to the robot’s position and edge
orientation. Here, sensory fusion plays a crucial role in the generation
of the topological architecture: on the one hand, the LiDAR is used for
the geometric characterization of the environment and the detection of
obstacles during the movement of the agent, and on the other, the RGB-
D camera and encoders are used to estimate the position of objects. It is
crucial to emphasize that synchronization of sensor information is not
a critical aspect because the Object Positioning module is tolerant to
4

small odometry drifts that will be corrected through multiple detections
of the same object. The platform speed is low enough (approximately
0.2 m/s) so that a small desynchronization between the camera and
the encoders result in centimeter-level positioning errors that do not
affect the performance. In this idea, our proposal does not require an
exact topological description, but a coarse description is sufficient for
localization.

3.1. 2D position estimation of objects

This module uses as inputs visual and depth images of an RGB-D
camera as well as information from encoders. From these inputs our
solution generates a map with a coarse 2D distribution of significant
objects. Taking into account the most common objects in structured
indoor environments, a YOLOv3 model (Redmon & Farhadi, 2018) was
trained for visual detection of these objects. In particular, the following
nine classes have been considered as natural beacons: window, door,
elevator, fire extinguisher, plant, bench, firehose, light-box and col-
umn. Fig. 3 depicts as examples the output detections for three visual
captures, where each detection is marked with its bounding box and
includes the corresponding label and depth estimation in meters.

The steps taken to generate the topological distribution of objects
are described below:

• Object detection. This step is based on YOLO as a real-time one-
stage framework. The output of the visual detector provides the
following information for each detected object: coordinates of
the bounding box, the category of the detected object and the
confidence score. Since this last parameter reflects how likely
the box contains an object (objectness) and how accurate is the
boundary box, we set empirically a threshold value of 0.8 to
filter poor detections. To generate a custom model we ran a fine-
tuning process using our own training dataset with a total of
3,193 labeled images of 640 × 480 pixels captured in indoor sce-
narios. Based on this training dataset 8,748 object instances were
annotated and distributed between the mentioned nine classes,
where one or more annotated objects correspond to each image.

• Object depth. The depth is estimated from the information pro-
vided by the RGB-D camera. For this purpose, the median of the
depth of the pixels in the bounding box of the detected object
is computed. Additionally, to maintain coherence with the RGB-
D operating distance range and to avoid noisy measurements
of pixels corresponding to the background of the scene or light
reflections on windows, the system omits those pixels with a
distance of more than 10 m and less than 1 m. As example
Figs. 4(a) and 4(e) represent the output of the object detector for
each of the captures, where the door has been detected during the
robot’s movement (each detection is marked with its correspond-
ing category label, bounding box and depth estimation). Figs. 4(b)
and 4(f) represent as examples the corresponding depth images as
colormaps overlapping them with the detected edges of the scene
for a better understanding, whereas Figs. 4(c) and 4(g) depict the
corresponding depth histogram for both doors. As can be seen
from the comparison of the two histograms, the measurement
accuracy is higher, in general, as the robot gets closer to the
object.

• 2D Object position. The estimation of object position is performed
based on the depth obtained in the previous step and the estima-
tion of the angle of the object centroid with respect to the optical
axis. Precisely, to estimate the angle of the object we rely on the
geometry of the camera using the pinhole model. Thus, we can
consider that the angle of the object concerning the optical axis
is approximately equal to the ratio between the angular aperture
of the camera and the distance in pixels of the projected object
in the image plane from the center. The geometric model to
estimate object localization is depicted in Figs. 4(d) and 4(h) in

polar coordinates for corresponding examples of Figs. 4(a) and
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Fig. 3. Examples of results at the output of our YOLOv3 object detector including depth estimation.
Fig. 4. Examples of object position estimation for two captures taken on the same edge. (a,e) Visual images with object detection and depth estimation. (b,f) Depth images. (c,g)
Depth histograms for detected objects. (d,h) Geometric model for object position estimation corresponding to (a,e), respectively.
4(e). Here, the position estimation of the object ‘door’ (denoted
as point 𝑃 ) is determined by the intersection of the blue circle
of radius equal to the depth of the object and the direction given
by the angle of the object concerning the optical axis (red line).
The shaded cone specifies the aperture of the camera, which in
our case is equal to 69◦. As the robot approaches an object, it
is detected several times and the multiple detections serve to
improve the accuracy of the location estimation. In Fig. 5 𝑑1
and 𝑑2 represent the distances from two objects to the reference
node whereas 𝑑′1 and 𝑑′2 are the distances to the image plane of
the robot camera. From these distances and their corresponding
angles 𝛼1 and 𝛼2, transverse and longitudinal components are
calculated.
In our algorithm, the origin node 𝐎 on each edge is considered
as the longitudinal distance reference. In the considered environ-
ments based on a multi-aisle layout, we can roughly consider that
the optical axis of the robot’s camera moves aligned with the
center of the aisle between two consecutive nodes.

• Temporal integration of detections. This module combines into a
single detection several time-based detections of the same object
along an edge’s path. For this purpose, a separate agglomerative
clustering algorithm is used for each object category with a
threshold of maximum distance between detections of the same
object. Owing to the nature of the objects, which can be large-
area extensions like doors and windows or small objects like
fire extinguishers, difference thresholds for distance have been
established for each object category. The procedure is shown for
one edge in Fig. 6. More specifically, the map generated at the
end of the agglomerative clustering is depicted in Fig. 6(h), while
the multiple estimates of localization for the identified objects
are shown in Fig. 6(g). From Fig. 6(h) note that the transverse
5

Fig. 5. Scheme for estimation of 2D object position estimation along the movement
on an edge, which is represented by gray color. Note that the origin reference O
is here placed locally at the origin node of each edge. Here, 𝑑𝑡1 and 𝑑𝑡2 denote the
transverse distances, and 𝑑𝑙1 and 𝑑𝑙2 the longitudinal components. Variables denoted
with hyperindex prime refer to the distances of the objects with respect to the image
plane of the robot camera.

distance is significantly smaller than the longitudinal distance.
For reasons of space, not all the captures along the edge have been
represented, but rather each three consecutive images correspond
to longitudinal distance increments in the robot’s position of
1.5 m.

3.2. Node detection

The purpose of this stage is the detection of characteristic zones
of the environment regarding to the geometrical information. In our
approach nodes represent areas of the environment that force a relevant
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Fig. 6. Example of generation of 2D object position estimation. (a–f) Visual detections of objects. (g) Map of detections. (h) Map of object position estimation after clustering.
Fig. 7. Types of nodes considered in a building with dense distribution of corridors (robot position and orientation are represented in red). (a) End Node. (b) Node ‘T’. (c) Node
‘L’. (d) Cross node. (e) Non node.
change in the agent’s trajectory. Since we consider that an edge is
defined by two adjacent nodes, this sub-module allows us to delimit the
beginning and end of the different edges of the explored environment.
In fact, the 2D Object Position Estimation stage is only triggered when
the agent enters the zone of influence of a new node and its execution
stops when it detects the following node. Here, edges are considered as
transitions between nodes. Fig. 7 represents the different categories of
nodes considered in this work. Thus, for each type of node, we represent
the location of the robot with a cross and the possible trajectories are
depicted in green. Regarding this criterion, common corridor structures
can be classified into the following categories:

• End node: There is no outlet at the front, neither from the left nor
from the right of the corridor. The agent cannot move forward.

• Node ‘T’: There are two outlets for the agent since the corridor
presents two lateral bifurcations.

• Node ‘L’: The path presents a marked change of direction. We
have considered in this category changes of direction involving
angles less than 40◦, regardless of whether the turn is from the
left or the right.

• Cross node: The corridor presents three or more outlets (two
laterals: left and right, and another frontal one).

• Non node: It is considered as a special case of node and it allows
to incorporate additional context into the exploration. It refers to
the zones of transition between nodes while the agent is moving
along the corridors.

The LiDAR signature feeds the input of our classifier whose output
determines the type of node. Because of the efficiency of Support Vector
Machines (SVMs) (Cortes & Vapnik, 1995), we used this technique for
our classification module. Fig. 8 shows examples of LiDAR signatures
for the five node types considered. The left images represent the point
cloud based on a raw LiDAR scan, where the red dot and line indicate
the position and orientation of the robot. In addition, right-hand figures
depict in blue the signature extracted by our system after processing
6

raw scans as a function of the angle. Here, green and red boxes show
explorable (free space) and non-explorable directions, respectively, for
navigation considering a distance threshold of 5 m. We have established
the parameter 𝑁𝑏 as the number of bins into which to divide the
angular range of measurements. Note that we limit the angular range of
laser scans from −90◦ to 90◦ because, depending on the mobile platform
structure, the backside may intercept the beam.

An inherent challenge of SVM-based classifiers lies in selecting the
appropriate kernel and its specific parameters. It requires a search for
the optimum settings for the particular problem. Optimal values of
parameters in our model were determined in our early work (Lafuente-
Arroyo et al., 2022) as a trade-off between accuracy and model com-
plexity. Specifically, optimal values were 𝑁𝑏 = 50, 𝐶 = 8 and 𝛾 = 0.25,
where 𝐶 is the regularization parameter and 𝛾 is the parameter of
influence of the kernel RBF.

3.3. Topological localization

The purpose of this module is to provide an automatic localization
based on a comparison of the perceptual observations captured by the
agent on its movement and the topological map used as a reference. In
essence, we aim to address the question: where are we in the graph?
Specifically, this module is activated after completing each edge to
search for the best matching route. The matching of each edge is
computed by an evaluation function that encompasses its approximate
length, its topological distribution of objects and the categories of the
two nodes that define it. This function assigns a weight to each edge
of the reference map as a measure of similarity and, consequently,
the highest weight determines the edge that best fits the observations.
Recursively, the weight of a trajectory can be calculated as the product
of the weights of the edges that constitute it.

In this approach, we define a trajectory as a set 𝑌 =
{

𝑦𝑖
}

𝑖=1∶𝑃
of 𝑃 node indices and 𝑃 − 1 edges as connections of each pair of
consecutive nodes. Additionally, 𝑀 =

{

𝑀 ,𝑑
}

represents the
𝑖 𝑖 𝑖=1∶𝑃−1
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Fig. 8. Examples of depth signatures with 2D LiDAR scanning in different indoor contexts (Left image: LiDAR scan point cloud with robot position and orientation in red, and
right image: signature extracted by our system represented in blue considering 25 bins). (a) End node. (b) ‘T’-type node. (c) Node ‘L’. (d) Cross node. (e) Non node.
observations/measurements of sensors through edges. Thus, for a spe-
cific edge 𝑒𝑖 =

(

𝑦𝑖, 𝑦𝑖+1
)

, the parameter 𝑑𝑖 denotes the edge length
provided by encoders and 𝑀𝑖 is a tuple that defines the detected objects
and their positions concerning the origin node of the edge. Taking
into account sensory information, we determine a weight associated to
each possible trajectory of the same length (number of edges) in the
reference map (GT) defined by the sequence of nodes 𝑌 ′ =

{

𝑦′𝑖
}

𝑖=1∶𝑃
and sensory information 𝑀 ′ =

{

𝑀 ′
𝑖 , 𝑑

′
𝑖
}

𝑖=1∶𝑃−1 annotated in a previous
process.

The analytic model we propose to estimate the weight 𝑤𝑌 ′ of the
hypothetical trajectory 𝑌 ′ can be broken down for each 𝑖th edge into
two contributions: 𝑤𝑖,nodes and 𝑤𝑖,objects, corresponding to the nodes
and distribution of objects, respectively. The model is given by the
following equation:

𝑤𝑌 ′ = 1
2𝑃−1

𝑃−1
∏

𝑖=1

(

𝑤𝑖,nodes +𝑤𝑖,objects
)

, (1)

where both the weights of 𝑤𝑖,nodes and 𝑤𝑖,objects as well as the weight
of 𝑤𝑌 ′ will lie within the interval [0,1] due to the normalization factor
2𝑃−1. Here 𝑤𝑖,nodes quantifies the similarity between node classes and
the edge length between detection and annotation, whereas 𝑤𝑖,objects
considers the similarity in distributions of objects.

In more detail, Eq. (1) can be rewritten as follows:

𝑤𝑌 ′ = 1
2𝑃−1

𝑃−1
∏

𝑖=1

(

𝑓𝑖𝑒
−𝛾1𝛥𝑑𝑛𝑖 +

𝑂𝑖
∏

𝑗=1
𝑔𝑗𝑒

−
(

𝛾2𝛥𝑑𝑙,𝑜𝑗 +𝛾3𝛥𝑑𝑡,𝑜𝑗
)

)

, (2)

where for each 𝑖th edge the term 𝛥𝑑𝑛𝑖 = |

|

|

𝑑𝑖 − 𝑑′𝑖
|

|

|

represents the
difference of length in absolute value between odometry readings and
annotation, and 𝑂𝑖 is the number of objects. The terms 𝛥𝑑𝑙,𝑜𝑗 and 𝛥𝑑𝑡,𝑜𝑗
correspond to the difference in positioning: longitudinal and transverse,
respectively, between detected objects and reference positions. Here, it
is important to point out that we only consider the matching of objects
of the same category. Thus, we have established a correspondence
based on the search for the detected object closest to the GT objects,
ensuring that the Euclidean distance between matched objects does not
exceed a certain threshold. In addition, the constant 𝛾1 weights the
distance differences between nodes, whereas 𝛾2 and 𝛾3 weight, respec-
tively, the differences between longitudinal and transverse distances of
7

objects. In the particular case of objects without correspondence the
distances 𝛥𝑑𝑙,𝑜𝑗 and 𝛥𝑑𝑡,𝑜𝑗 are considered zero and only the parameter
𝑔𝑗 , which will be described below, comes into play.

Finally, the meaning of the parameters 𝑓𝑖 and 𝑔𝑗 can be described as
follows. The penalization factor 𝑓𝑖 quantifies the discrepancy between
the detected categories: 𝑐(𝑦𝑖) and 𝑐(𝑦𝑖+1), of the two terminal nodes of
the 𝑖th edge in the sequence 𝑌 and the categories: 𝑐(𝑦′𝑖) and 𝑐(𝑦′𝑖+1), of
the homologous 𝑖th edge in the reference sequence 𝑌 ′ as:

𝑓𝑖 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if
(

𝑐(𝑦𝑖) = 𝑐(𝑦′𝑖) and 𝑐(𝑦𝑖+1) = 𝑐(𝑦′𝑖+1)
)

𝐾1 if
(

𝑐(𝑦𝑖) ≠ 𝑐(𝑦′𝑖) and 𝑐(𝑦𝑖+1) = 𝑐(𝑦′𝑖+1)
)

or
(

𝑐(𝑦𝑖) = 𝑐(𝑦′𝑖) and 𝑐(𝑦𝑖+1) ≠ 𝑐(𝑦′𝑖+1)
)

𝐾2 others.

(3)

Thus, when the node type matches in the detection and GT, then
𝑓𝑖 = 1. In addition, the constants 𝐾1 and 𝐾2 penalize the impact
of having discrepancy in only one type of node or both of them,
respectively. We can also see that the parameter 𝑔𝑗 quantifies the effect
of correspondence between the set of detected objects 𝑂 =

{

𝑜𝑗
}

𝑗=1∶𝐷

and the set of reference objects 𝑂′ =
{

𝑜′𝑗
}

𝑗=1∶𝑅
for the 𝑖th edge as:

𝑔𝑗 =

{

1 if 𝑜𝑗 ∈ 𝑂𝐷 ⟶ 𝑜′𝑗 ∈ 𝑂′

𝐾3 other.
(4)

Thus, when there is correspondence between a reference object in the
map and a detected object, then 𝑔𝑗 = 1. If, on the other hand, there
is no correspondence, we set 𝑔𝑗 = 𝐾3. In our model, the constants
𝐾1, 𝐾2 and 𝐾3 ∈ R+ with 𝐾1 < 1, 𝐾2 < 1 and 𝐾3 < 1, being their
optimal values experimentally determined.

In a scenario defined by a graph with a set of 𝐿 nodes 𝑁 =
{

𝑛𝑖
}

𝑖=1∶𝐿
and with a route of 𝑃 nodes and (𝑃 − 1) edges, the algorithm requires
the computation of a multidimensional weight matrix or tensor 𝑊 of
shape 𝐿𝑃 . Here, each entry represents the weight of each hypothetical
route regarding measurements. We shall refer to the order of the matrix
as the number of considered edges in the evaluation. However, we can
reduce the computational burden by considering only the history of
the last edges in each iteration. Thus, we define a first-order 𝑃 × 𝑃
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Fig. 9. Map of the first scenario used in our experiments. (a) Occupancy map of the building of the Polytechnic School of the University of Alcalá (white, gray and black pixels
represent free space, non visitable space and occupied space, respectively). (b) Topological map with node indices. (c) Validation route. (d) Test route 1. (e) Test route 2. The
direction of travel on the edge is represented by the arrow and the double arrow indicates the corridors that are traveled in both directions. The source and destination nodes of
each route are shown with green and red circles, respectively.
matrix 𝑊1 only if the last traversed edge is considered, wherein each
entry represents the weight of a possible route defined by an edge
as a transition between two nodes. In the case of a second order
𝑃×𝑃×𝑃 matrix 𝑊12, we consider only the two last edges and each entry
represents a possible route defined by two edges as a transition between
three nodes, and so on. For instance, the entry 𝑤𝑖,𝑗,𝑘 of the second order
matrix 𝑊12 indicates the weight of the route defined by the set of nodes:
{

𝑦𝑖, 𝑦𝑗 , 𝑦𝑘
}

. It is worth noting that to reduce the number of entries to
be computed, we establish the following criterion: only entries of the
matrix that define a route consistent with the adjacency matrix, which
indicate whether pairs of nodes are adjacent in the reference map, and
with the movements provided by encoders are computed and have a
nonzero value.

4. Experiments and results

We evaluated the proposed localization method using two public
real-world environments. Specifically, the first localization experiments
were conducted on the building of the Polytechnic School of the Uni-
versity of Alcalá, which is distributed over four floors of approximately
10,000 m2. Fig. 9(a) shows the detailed occupancy map of one of
these floors and Fig. 9(b) depicts the topological map generated for
the experiments. As we can observe, the structure includes a total of
64 nodes referenced by their corresponding indices and 128 bidirec-
tional connecting edges considering that the topological distribution of
objects is different for the two directions. Because the object-viewing
structure is not symmetrical, each of the two possible directions of
an edge is treated differently. Complementary experiments were con-
ducted at the Faculty of Nursing and Physiotherapy of the University
of Alcalá. It is a medium-sized building and the objective of these
last experiments, which are described in Section 4.5, was to test the
generalization capacity of the system in another kind of environment.
8

4.1. Experimental setup

Captures have been taken in both environments with our own low-
cost assistive robotic platform (see Fig. 1(a)). LOLA is a low-cost mobile
assistive robotic platform described in López-Sastre et al. (2021) and
the entire mechanical and electrical design has been conceived by our
research team. It is equipped with two motors and their corresponding
encoders, which are all controlled with an open-source Arduino board.
The internal structure is constructed of wood and metal. Additionally,
the outer shell, imitating a person wearing a tuxedo, was made entirely
by 3D printing. The platform is powered by two batteries, and it
includes an electronic driver interface to allow easy interconnection of
the different parts of the system and all the power management. The
sensing part of LOLA is composed of an Intel RealSense D435 camera
and an RPLIDAR A1 sensor. To integrate into the mobile robot all the
high-level processing that cannot be embedded into the Arduino, the
platform has two possibilities: a Jetson TX2 board from NVIDIA and
an Intel NUC as Mini PC for the following functionalities: (a) visual
perception, (b) online action detection, and (c) navigation.

We collected three datasets in the first environment (Polytechnic
School): a reference dataset for generating the topological map, a
validation dataset for optimization of the hyperparameters of the model
and, finally, a test dataset to evaluate the proposed method. To obtain
multisensory acquisition we teleoperated the robot to collect time series
data. Captures were made with the mobile platform having fixed linear
displacements of 0.5 m in the sections of edges.

The description of the three datasets is as follows:

1. Reference dataset: a topological map of the scenario was gen-
erated by exploring the entire floor of the building. Based on
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this dataset, the defined two-level structure was generated au-
tomatically for the considered scenario using the two first steps
of the system: 2D Position Estimation and Node Detection. This
structure, which includes the distribution of objects and node
categories, was used as a reference in validation and test pro-
cesses. In total, the topological map includes 28 ‘T’-type nodes,
28 ‘End’- nodes and 8 ‘L’-type nodes. The map also includes 64
edges, which being considered different for each one of the two
possible directions, generate a total of 128 bidirectional edges.
The minimum length per edge in the reference dataset is 2.01 m,
the maximum length is 19.65 m, and the mean length is 10.13 m.

2. Validation dataset: it includes the captures of a route of 14
edges defined by the following sequence of nodes (see Fig. 9(c)):
𝑉 𝑆 = {18, 17, 19, 21, 23, 24, 23, 25, 26, 27, 28, 27, 29, 31, 33}, which
presents 10 ‘T’-type nodes, 3 ‘End’-nodes and 2 ‘L’-type nodes.

3. Test Set: it includes the captures of two different routes with
14 edges each one (see Figs. 9(d) and 9(e)): 𝑇𝑆1 = {34, 33, 35,
37, 39, 40, 39, 41, 42, 43, 45, 47, 48, 47, 49} and
𝑇𝑆2 = {64, 63, 61, 62, 61, 59, 60, 59, 58, 57, 55, 56, 55, 53, 54}. The
distribution by categories of the nodes in test sequences is the
following: ‘T’-type nodes (10 and 8 for the first and second
sequences, respectively), ‘End’ nodes (3 and 5 for the first and
second sequences, respectively) and ‘L’-type nodes (2 for both
sequences).

To evaluate the performance of the model, we used as metric
he normalized weight of the real edge 𝑤𝑟𝑒𝑎𝑙_𝑛𝑜𝑟𝑚 defined as the ratio
etween the weight evaluated at the real traveled edge (𝑤𝑟𝑒𝑎𝑙) and the
aximum weight among all possible edges of the map excluding the

eal traveled edge (𝑤𝑚𝑎𝑥−𝑟𝑒𝑎𝑙). Consequently, three possible cases can
rise:

𝑟𝑒𝑎𝑙_𝑛𝑜𝑟𝑚 =
𝑤𝑟𝑒𝑎𝑙

𝑤𝑚𝑎𝑥−𝑟𝑒𝑎𝑙
=

⎧

⎪

⎨

⎪

⎩

> 1 if 𝑤𝑟𝑒𝑎𝑙 > 𝑤𝑚𝑎𝑥−𝑟𝑒𝑎𝑙

= 1 if 𝑤𝑟𝑒𝑎𝑙 = 𝑤𝑚𝑎𝑥−𝑟𝑒𝑎𝑙

< 1 if 𝑤𝑟𝑒𝑎𝑙 < 𝑤𝑚𝑎𝑥−𝑟𝑒𝑎𝑙 .

(5)

Values above 1 indicate that the actual edge is discriminating,
hereas a value equal to 1 indicates ambiguity in the sense that there
xist similar edges to the real one. However, this latter case does not
mply a problem because it is very likely that the concatenation of
dges in a route is sufficient to achieve localization. Finally, values
elow 1 introduce location errors since there exist one or more edges
ith higher weight than the real traveled one. This is a critical case
ecause of the greater difficulty in retrieving the true location. Since
e considered the unit value as the threshold of the normalized weight
efined by Eq. , we established the following criterion to quantify the
ocation error in a sequence of edges: we analyzed the summation of
eviations respect to the threshold value equal to 1, considering only
hose edges that introduce error locations (i.e. 𝑤𝑖,𝑟𝑒𝑎𝑙_𝑛𝑜𝑟𝑚 < 1). Thus,
e compute the accumulative error location (𝐴𝐸𝐿) factor given by:

𝐸𝐿 =
∑

𝑖
(1 −𝑤𝑖,𝑟𝑒𝑎𝑙_𝑛𝑜𝑟𝑚)|𝑤𝑖,𝑟𝑒𝑎𝑙_𝑛𝑜𝑟𝑚<1

(6)

.2. Hyperparametric optimization

Due to the computational complexity of optimizing our multi-
arametric localization model, which owns six degrees of freedom, a
yperparametric analysis has been performed using the validation set.
or this purpose, each one of the parameters was varied while the rest
ere kept fixed. The range of initial values was chosen after having

arried out previous tests beforehand, thus ensuring that the optimum
alue of the parameter will be in that range. Specifically, the range
f variation of 𝛾1, 𝛾2 and 𝛾3 was [0.00–0.36] with steps of 0.0125,
hereas the range of variation of 𝐾1, 𝐾2 and 𝐾3 was [0.00–0.95] with

teps of 0.05. In this analysis of hyperparameters, each edge of the
alidation set is evaluated independently and not as a route of edges.
9

e determine the optimal value of each of the six above-mentioned o
arameters (𝛾1, 𝛾2, 𝛾3, 𝐾1, 𝐾2 and 𝐾3) using the minimization of the
𝐸𝐿 factor. Fig. 10 shows the graphs of the 𝐴𝐸𝐿 factor as a function
f the range of values analyzed for each hyperparameter. To evaluate
he impact of the parameters 𝐾1 and 𝐾2, which by definition penalize

errors in the classification of nodes, we manipulated node categories of
three of 14 total edges of the validation set.

Table 1 shows the optimal values and their corresponding values of
the discrimination factor. Analyzing the results, it should be noted that
the optimal value of 𝛾∗1 = 0.00 warns of the irrelevance of analyzing
the difference in lengths in scenarios like ours with corridors of similar
lengths for similar distributions of objects. Additionally, we can verify
that the discrepancy factors between node categories present high
values (𝐾∗

1 = 0.70 and 𝐾∗
2 = 0.80) close to 1. Note that the value

was fixed in Eq. for cases in which the classification of nodes is
orrect. These results suggest that metric information of the edge as
ell as categorization of nodes modeled by the first term of Eq. (1) is
uch less discriminatory than object distribution corresponding to the

econd term in the same equation modeled by the parameters 𝛾2 and 𝛾3
in exponentials. In conclusion, experiments have demonstrated that the
distribution of characteristic objects is the most relevant information
for localization in corridor environments to the detriment of node types
and length of corridors.

4.3. Matrix order analysis: Performance and processing time

To evaluate the influence of the order of the weight matrix 𝑊 in the
performance we conducted experiments with the first sequence of the
test set. Unlike in the previous sub-section, the evaluation is made by
integrating the time series of the route and not independently for each
edge. Figs. 11(a)–11(c) illustrate the results corresponding to first (𝑊1),
second (𝑊12) and third order (𝑊123) matrices, where 𝑤𝑟𝑒𝑎𝑙 represents
the computed weight of the real traveled route, 𝑤𝑚𝑎𝑥 the maximum
weight of the matrix and 𝑤𝑚𝑎𝑥−𝑟𝑒𝑎𝑙 the maximum weight of the matrix
excluding the real traveled route for each iteration. To correct possible
discontinuities in consecutive iterations of the process we propose to
consider a variation of the algorithm that takes into account spatial
and temporal consistency in estimation of the route. Hence, all entries
of the matrix are multiplied in each iteration by a penalization factor
𝛼 < 1 except those entries that have continuity with the location
stimated in the previous iteration. Specifically, Figs. 11(d)–11(f) show
he output values (𝑊 ′

1 , 𝑊 ′
12 and 𝑊 ′

123) after applying a penalty factor
= 0.9. From the inspection of the results, it can be seen that initially,

he algorithm is able to self-locate correctly (𝑤𝑖,𝑚𝑎𝑥 = 𝑤𝑖,𝑟𝑒𝑎𝑙) in some
specific intervals: from iteration 6 to 9 for 𝑊12 and from iteration 7 to
10 for 𝑊123 and from 13 to the end in both cases. However, considering
the consistency of the trajectory in estimations denoted by hyperindex
prime, we observe greater stability and the algorithm estimates the real
location correctly from the first iteration in which it is able to self-locate
(from iterations 6 and 7, respectively, for 𝑊 ′

12 and 𝑊 ′
123, to the end).

From inspection of Fig. 11, it is worth noting that as we increase
he order of the matrix, the performance improves and discriminating
ower also increases. This is also demonstrated by the values of the
𝐸𝐿 factor for the different orders: 0.90, 0.37 and 0.32 for 𝑊 ′

1 , 𝑊 ′
12

nd 𝑊 ′
123, respectively.

The dual trade-off between performance and computational burden
ed us to analyze, in addition, computation time as a function of the
rder of the weight matrix. The localization function is executed once
or each edge detected and includes two tasks: matrix computation
nd determination of the maximum weight. Fig. 12(a) represents on
logarithmic scale the box plot as a function of the matrix order for

est sequence 1 considering that the experiments have been conducted
n a PC with 3.40 GHz Intel® CoreTM i7-6700 CPU, 16 GB memory,
VIDIA GeForce GTX TITAN X GPU and 64-bit Ubuntu 20.04 operating

ystem. Here it can be seen that the computation time exhibits a clear
xponential variation as the matrix order increases, with average times

f 45.45 ms, 30.90 ms, 252.50 ms and 133.76 s for 𝑊1, 𝑊12, 𝑊123 and
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Table 1
Optimal values of the hyperparameters of the proposed localization model and their corresponding 𝐴𝐸𝐿 factor.
𝛾∗1 = 0.00 𝛾∗2 = 0.025 𝛾∗3 = 0.05 𝐾∗

1 = 0.70 𝐾∗
2 = 0.80 𝐾∗

3 = 0.80
𝐴𝐸𝐿 = 0.38 𝐴𝐸𝐿 = 0.13 𝐴𝐸𝐿 = 0.13 𝐴𝐸𝐿 = 1.55 𝐴𝐸𝐿 = 0.15 𝐴𝐸𝐿 = 0.15
Fig. 10. Hyperparametric optimization of the model. (a) Parameter 𝛾1. (b) Parameter 𝛾2. (c). Parameter 𝛾3. (d) Parameter 𝐾1. (e) Parameter 𝐾2. (f) Parameter 𝐾3.
Fig. 11. Localization performance of the proposed algorithm on test sequence 1. (a, b and c). Weights of matrices 𝑊1, 𝑊12 and 𝑊123, respectively. (d, e and f). Weights of matrices
𝑊 ′

1 , 𝑊 ′
12 and 𝑊 ′

123 that include the trajectory continuity modification.
𝑊1234, respectively. As a trade-off between accuracy and computational
time, the results lead us to consider the matrix of order 3 as the
best option of those analyzed, showing the fourth order a prohibitive
value. It is important to note that the computation time for the first-
order matrix is slightly longer than for the second-order matrix. This
10
is because, as is explained below, the system only considers the routes
consistent with rotation angles provided by the encoders and in the case
of working with a first-order matrix it does not make sense to apply
turn compatibility. The breakdown of processing time of the two tasks
involved in the localization process is shown in Fig. 12(b). As is to be
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Fig. 12. Localization processing time of test sequence 1. (a) Box plot for different matrix orders. (b) Average time of the two sub-tasks: matrix computation and determination of
maximum weight.
expected, the computational burden for the computation of matrices
increases with the order of the matrix, but the biggest bottleneck as
the order increases is in the determination of the maximum weight.

Here, we need to differentiate between the time required to self-
locate at the end of each edge and the time spent to generate the
topological structure of each edge. Considering the 14 edges of test
sequence 1, we have obtained an average processing time per cap-
ture of 99.91 ms, which involves object detection, tracking and node
classification and brings us closer to a real-time solution.

4.4. Localization: Analysis of results

This experiment is intended to evaluate the system under different
conditions after adjusting the optimal hyperparameter and setting the
third-order matrix with trajectory consistency. Table 2 summarizes
localization results using the test sequences 1 and 2 by breaking them
down into sections of three edges (third-order sections). We include
the real sections in each iteration, the estimated section and the total
number of candidate sections. By inspection, we can observe that the
system is capable of estimating the true location from iteration 7 in
test sequence 1 and from iteration 3 in test sequence 2. The better
estimation of sequence 2 is because the route includes a larger number
of corridors with discriminative objects (fire extinguishers, light boxes,
hoses, etc.) than sequence 1, which includes a larger number of central
ring sections in which the objects (doors, columns and windows) are
not able to significantly reduce ambiguity. A demo video is provided on
the site,1 where a small pause has been added when the agent reaches
the end of each edge to show the clustering result and the new location
estimate.

It is important to point out that from the total number of en-
tries (644 = 16, 777, 216) of the third order matrix, we impose two
restrictions: (1) we only take into account those candidate routes of
three edges that are consistent with the adjacency matrix (728 possible
entries according to our scenery), and (2) the system filters out the
possible routes of three edges consistent with the rotation angles at
nodes provided by the encoders. As it can be observed in Table 2, both
restrictions suppose a great reduction in the number of possible routes
to discriminate. In more detail, it should be noted that most common
trajectories in structured indoor environments involve routes under the
following characteristics of turning: (1) movement without turn when
the robot passes through aligned edges (0◦ turn), (2) movement out
of or into a corridor (±90◦ turn), and (3) movement back from the
end of a corridor (±180◦ turn). Therefore, certain movement patterns
with a lower probability of occurrence are highly discriminatory. In the
case of our test scenario, most discriminating movements correspond to
passing through ’L-nodes’ with turning angles of approximately ±45◦.
Thus, we can see in Table 2 that the number of possible routes is
reduced to 4 in these cases. As an example, Fig. 13 shows with red

1 https://youtu.be/sEp-kSXtRZY
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Fig. 13. Compatible paths (red color trajectories) with the third order sequence sec-
tions of test 1 (40→39→41→42) and test 2 (60→59→58→57). Source and destination
nodes of the routes are shown with green and red circles respectively.

color the four candidate sections by turning compatibility for the two
following third order trajectories: 40→39→41→42 from test sequence
1 and 60→59→58→57 from test sequence 2. Here, we represent with
green and red circles the first and the fourth nodes of the section,
respectively.

Finally, to analyze the contributions of nodes and objects to the
weight of Eq. (2), we consider, as an example, the contributions when
the platform runs along the edge 58→57. In this case, the system is
able to perform the localization correctly being the two most weighted
edges: 58→57 and 26→25 with values 0.867 and 0.797, in first and
second place, respectively. Fig. 14 illustrates the object distribution
map generated in the test process after traversing the edge 58→57 and
the maps used as reference of the two most weighted edges, which were
generated previously from the reference dataset. In addition, Table 3
summarizes the contributions of weights when comparing outputs of
node and object detection with reference information. Here, we include
the categories of both detected terminal nodes: 𝑐(𝑦1) and 𝑐(𝑦2), and
those of the nodes annotated on the reference edge: 𝑐(𝑦′𝑖) and 𝑐(𝑦′𝑖+1), as
well as the difference in length 𝛥𝑑𝑛 between each annotated edge and
odometry. On the other hand, Table 3 includes else for each category
of objects with correspondences the discrepancy vectors of longitudinal
(𝜟𝐝𝑙,𝑜) and transverse (𝜟𝐝𝑡,𝑜) distances. As we can observe, the discrep-
ancy between the detection process and references of edges 58→57
and 26→25 includes one and two unmatched objects, respectively. In
this example, the discrimination between the two edges is given by the
number of unmatched objects, which serves to attenuate the weight of
the edge 26→25 concerning the edge 58→57.

The baseline methods used for comparison are based on two classic
image retrieval approaches for image localization. Content-Based Image
Retrieval (CBIR) allows to establish an image feature vector description
from low-level visual features. Hence, CBIR algorithms find the image
of the dataset with the closest similarity to the query image. Specifi-
cally, the two methods chosen as baseline for the evaluation are the
following:

https://youtu.be/sEp-kSXtRZY
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Table 2
Localization results for test sequences 1 and 2, including the number of iteration, the third order real traveled sections, the estimations based
on the use of the third order matrix and the total number of candidate routes. Incorrect estimations are shown in red and correct estimations
in bold.
Test sequence 1 (𝑇𝑆1) Test sequence 2 (𝑇𝑆2)

it Real route Estimation # routes Real route Estimation # routes

1 34→33 – – 64→63 – –
2 34→ 33 →35 – – 64→ 63 →61 – –
3 34→ 33 → 35 →37 50→ 49 → 51 →53 24 64→ 63 → 61 →62 𝟔𝟒 → 𝟔𝟑 → 𝟔𝟏 → 𝟔𝟐 16
4 33→ 35 → 37 →39 49→ 51 → 53 →55 20 63→ 61 → 62 →61 𝟔𝟑 → 𝟔𝟏 → 𝟔𝟐 → 𝟔𝟏 16
5 35→ 37 → 39 →40 3→ 5 → 7 →8 20 61→ 62 → 61 →59 𝟔𝟏 → 𝟔𝟐 → 𝟔𝟏 → 𝟓𝟗 28
6 37→ 39 → 40 →39 5→ 7 → 8 →7 24 62→ 61 → 59 →60 𝟔𝟐 → 𝟔𝟏 → 𝟓𝟗 → 𝟔𝟎 16
7 39→ 40 → 39 →41 𝟑𝟗 → 𝟒𝟎 → 𝟑𝟗 → 𝟒𝟏 28 61→ 59 → 60 →59 𝟔𝟏 → 𝟓𝟗 → 𝟔𝟎 → 𝟓𝟗 16
8 40→ 39 → 41 →42 𝟒𝟎 → 𝟑𝟗 → 𝟒𝟏 → 𝟒𝟐 4 59→ 60 → 59 →58 𝟓𝟗 → 𝟔𝟎 → 𝟓𝟗 → 𝟓𝟖 28
9 39→ 41 → 42 →43 𝟑𝟗 → 𝟒𝟏 → 𝟒𝟐 → 𝟒𝟑 4 60→ 59 → 58 →57 𝟔𝟎 → 𝟓𝟗 → 𝟓𝟖 → 𝟓𝟕 4
10 41→ 42 → 43 →45 𝟒𝟏 → 𝟒𝟐 → 𝟒𝟑 → 𝟒𝟓 4 59→ 58 → 57 →55 𝟓𝟗 → 𝟓𝟖 → 𝟓𝟕 → 𝟓𝟓 4
11 42→ 43 → 45 →47 𝟒𝟐 → 𝟒𝟑 → 𝟒𝟓 → 𝟒𝟕 4 58→ 57 → 55 →56 𝟓𝟖 → 𝟓𝟕 → 𝟓𝟓 → 𝟓𝟔 4
12 43→ 45 → 47 →48 𝟒𝟑 → 𝟒𝟓 → 𝟒𝟕 → 𝟒𝟖 20 57→ 55 → 56 →55 𝟓𝟕 → 𝟓𝟓 → 𝟓𝟔 → 𝟓𝟓 4
13 45→ 47 → 48 →47 𝟒𝟓 → 𝟒𝟕 → 𝟒𝟖 → 𝟒𝟕 24 55→ 56 → 55 →53 𝟓𝟓 → 𝟓𝟔 → 𝟓𝟓 → 𝟓𝟑 28
14 47→ 48 → 47 →49 𝟒𝟕 → 𝟒𝟖 → 𝟒𝟕 → 𝟒𝟗 28 56→ 55 → 53 →54 𝟓𝟔 → 𝟓𝟓 → 𝟓𝟑 → 𝟓𝟒 16
Fig. 14. Examples of topological maps for evaluation of weights. (a) Map generated in test process for the edge 58→57. (b) Map generated in annotation process as reference for
the edge 58→57. (c) Map generated in annotation process as reference for the edge 26→25.
Table 3
Example of analysis of contributions in the weight evaluation for the edges represented in Fig. 14. Here, 𝑐(𝑦1) and 𝑐(𝑦2) represent the categories
of both detected terminal nodes, 𝑐(𝑦′𝑖) and 𝑐(𝑦′𝑖+1) the categories of reference edges and 𝛥𝑑𝑛 the difference distance in meters between sensory
information and references. It also includes for each category of objects with correspondences: discrepancy vectors of longitudinal (𝚫𝐝𝑙,𝑜) and
transverse distances (𝚫𝐝𝑡,𝑜) in meters, and finally, the number of unmatched objects (𝑁𝐶).

Detection vs. edge 58→57 Detection vs. edge 26→25

Node contrib. Object contributions Node contrib. Object contributions

𝑐(𝑦1) = ‘L’ ‘Door’ (𝑤𝑑𝑜𝑜𝑟 = 0.956) 𝑐(𝑦1) = ‘L’ ‘Door’ (𝑤𝑑𝑜𝑜𝑟 = 0.952)
𝑐(𝑦2) = ‘L’ 𝚫𝐝𝑙,𝑜 = {0.090, 0.378, 0.020} 𝑐(𝑦2) = ‘L’ 𝚫𝐝𝑙,𝑜 = {0.001, 0.268, 0.490}
𝑐(𝑦′58) = ‘L’ 𝚫𝐝𝑡,𝑜 = {0.101, 0.088, 0.460} 𝑐(𝑦′26) = ‘L’ 𝚫𝐝𝑡,𝑜 = {0.121, 0.083, 0.400}

𝑐(𝑦′57) = ‘L’ ‘Window’ (𝑤𝑤𝑖𝑛𝑑𝑜𝑤 = 0.992) 𝑐(𝑦′25) = ‘L’ ‘Column’ (𝑤𝑐𝑜𝑙𝑢𝑚𝑛 = 0.975)
𝛥𝑑𝑛=0.480 𝚫𝐝𝑙,𝑜 = {0.115} , 𝚫𝐝𝑡,𝑜 = {0.108} 𝛥𝑑𝑛=0.310 𝚫𝐝𝑙,𝑜 = {0.037, 0.148, 0.310}

‘Column’ (𝑤𝑐𝑜𝑙𝑢𝑚𝑛 = 0.967) 𝚫𝐝𝑡,𝑜 = {0.061, 0.046, 0.153}

𝚫𝐝𝑙,𝑜 = {0.010, 0.197, 0.188}) 𝑁𝐶 = 2 (𝑤𝑁𝐶 = 0.640)
𝚫𝐝𝑡,𝑜 = {0.022, 0.199, 0.246})

𝑁𝐶 = 1 (𝑤𝑁𝐶 = 0.800)

𝑤𝑛𝑜𝑑𝑒𝑠 = 1.0 𝑤𝑜𝑏𝑗𝑒𝑐𝑡𝑠 = 0.734 𝑤𝑛𝑜𝑑𝑒𝑠 = 1.0 𝑤𝑜𝑏𝑗𝑒𝑐𝑡𝑠 = 0.594

𝑤58→57 =
1
2
(𝑤nodes +𝑤objects) = 0.867 𝑤26→25 =

1
2
(𝑤nodes +𝑤objects) = 0.797
o
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• Pixel MSE (Wang & Bovik, 2009): In our adaptation, we deter-
mine the localization as the edge with the smallest accumulative
pixel-wise mean squared error (MSE) based on reference images.

• SSIM (Wang et al., 2004): Structural similarity index measure
(SSIM) is used to measure the similarity between two images con-
sidering the distribution of pixel values, contrast and structure. In
our adaptation, the edge with the highest accumulative similarity
to the observations is localized to the current edge.

aseline methods have been integrated into our system replacing the
D object detection layer. Here, MSE and SSIM weights replace, respec-
ively, the term corresponding to the distribution of objects 𝑤𝑖,objects
n the expression (1) for our approach. Fig. 15 represents the values
12

w

f the first and third-order matrices (𝑊 ′
1 and 𝑊 ′

123) for our method,
s well as for MSE and SSIM on test sequence 1. From the results of
′
1 we can observe that MSE and SSIM achieve better values for the
𝐸𝐿 factor than our method (0.11 and 0.13, respectively, for MSE
nd SSIM compared to 0.90 for our method) in estimations of first
rder. In fact, they estimate correctly 8 real edges considering sections
f first order. However, the high visual similarity of our building
ranslates into poor discrimination capacity of MSE and SSIM. Thus,
hey exhibit a small margin of variation between the weight of the real
dge and the one with the highest score in case of failure. This is the
eason that justifies the degradation of MSE and SSIM as the order of
emporal and spatial integration increases. Unlike our method, which
as able to locate correctly since iteration 7 on test sequence 1 (see
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Fig. 15. Performance comparison of localization with baseline methods on test sequence 1. (a, b and c). Weights of matrix 𝑊 ′
1 for our method (𝐴𝐸𝐿 = 0.90), MSE (𝐴𝐸𝐿 = 0.11)

and SSIM (𝐴𝐸𝐿 = 0.13), respectively. (d, e and f). Weights of matrix 𝑊 ′
123 for our method (𝐴𝐸𝐿 = 0.32), MSE (𝐴𝐸𝐿 = 0.85) and SSIM (𝐴𝐸𝐿 = 0.93), respectively including the

trajectory continuity modification.
Fig. 16. Examples of visual detections in test sequences 1 and 2 under night-time lighting conditions.
Fig. 15(d)) based on the third order matrix, MSE and SSIM approaches
were not capable of locating themselves with stability by using third
order matrices and consistency of continuity in route (see Figs. 15(e)
and 15(f)). Moreover, our proposed method also outperformed baseline
methods on test sequence 2, where the system localized the self-position
accurately since the third iteration. In this case, the MSE method did
not localize itself until the last iteration (iteration 14) while SSIM was
not able to achieve it.

4.5. Generalization capability

To test the generalization capability of the proposed method, it
has been evaluated under different conditions: lighting changes and
presence of people. Furthermore, the system has been tested in a new
scenario different from that of the previous experiments. Firstly, since
variations in lighting can have an impact on visual object detection,
test sequences 1 and 2 were captured again in nighttime lighting
(see Fig. 16). In this instance, location estimations were correct from
iteration 8 and iteration 3 in sequences 1 and 2, respectively. The
findings, which showed resilience to controlled illumination changes in
indoor environments, were consistent with those observed in daylight.

Secondly, we intentionally took captures of a second order route
(17→19→21) with the presence of people to show the impact of interac-
tion with humans on the performance. Fig. 17 shows some result images
at the output detector as examples. Here, we can observe some of the
situations considered: people in front of the platform, crossing from one
side to another, or in static groups. It is interesting to verify that few
13
objects were completely occluded from the agent’s point of view and
not detected during the entire process (for example, a pair of doors in
the first edge and a door and a column in the second one). Figs. 17(f) to
17(i) include the topological maps generated under presence of people
versus the reference maps. Despite discrepancies between the distribu-
tion of objects due to occlusions, the system exhibited robustness and
was able to self-locate correctly since the second iteration.

Finally, we tested our algorithm in another different real-world
environment to check its reliability and generalizability. Specifically,
these additional experiments were conducted on the ground floor of
the Faculty of Nursing and Physiotherapy of the University of Alcalá.
It is a medium-sized building with a square floor of 30 × 34 m. The
building has a structure based on corridors but in this case, there is
not as high a degree of symmetry as in the first test environment.
Fig. 18(a) depicts the topological map generated from the reference
dataset. The structure includes a total of 12 nodes (5 ‘T’-type nodes,
5 ‘End’- nodes and 2 ‘L’-type nodes) and 24 bidirectional connecting
edges for the two directions. In this case, we did not collect a validation
set, since the goal was to test if the algorithm was able to localize
itself maintaining the same hyperparameter values that were previously
adjusted in the previous scenario and without needing a new optimiza-
tion of the model. Despite the presence of other relevant objects in this
environment, such as corkscrews or sofas, the same nine object classes
(window, door, fire extinguisher, …) that had been used in the previous
experiments were also used here as beacons without adding others.
Figs. 18(b) to 18(f) show examples of some outputs of the visual object
detector in this environment. Because the number of edges is relatively
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Fig. 17. Example of performance in presence of humans. (a,b,c,d,e) Visual detections in human interactive environment. Topological map (f) generated in presence of humans vs.
the reference map (g) for the edge 17→19. (h,i) Idem for topological maps of the edge 19→21.
Fig. 18. Map of the second environment used in our experiments (Faculty of Nursing and Physiotherapy of the University of Alcalá). (a) Topological map. (b,c,d,e,f). Examples
of visual detections in this building.
low in this building, we have defined two new test trajectories of only
three sections: 𝑇𝑆3= 4→2→3→2 and 𝑇𝑆4= 2→1→11→9. In this case,
the routes estimated by the system coincided exactly with the two
real routes in each of the iterations of first, second and third order.
In detail, the weights achieved by the third order matrix are 𝑊 ′

123 =
0.8097 and 𝑊 ′

123 = 0.5747, respectively for 𝑇𝑆3 and 𝑇𝑆4, while the
weights of the second candidates are: 0.5651 and 0.345, respectively.
The results demonstrate that moderate visual discrimination between
edges in this building is sufficient for the system to localize correctly
and that the estimate remains stable from the first iteration. We can
conclude that results support the validity of our approach and its
generalization capacity to other environments without the need for any
new hyperparametric optimization of the model.

5. Conclusions

In this paper, we have presented a novel indoor localization model
based on multisensory integration to lessen high levels of ambigu-
ity in complex symmetrical environments. This method is inspired
by a two-level topological structure defined by characteristic objects
and geometric information. Based on assessing temporal and spatial
consistency, an analytic model has been implemented that compares
14
the topological structure generated in the exploration process with a
topological map of reference.

Experimental results have demonstrated the system is able to locate
itself in two real environments and localization ambiguity is reduced
as the mobile platform moves on the route. The following conclusions
were drawn from the analysis of results:

• The incorporation of graph structure and natural beacons into
the topological map enables accurate estimation, even in scenar-
ios with multiple corridors or visually and geometrically similar
sections.

• The experiments highlight that the distribution of characteristic
objects plays a crucial role in localization within corridor envi-
ronments, surpassing the significance of node types and corridor
lengths.

• The double trade-off between performance and computational
load has allowed us to determine the optimal order of the weight
matrix to integrate the historical record of locations and obtain
consistency over time without discontinuities in the estimated
trajectory.

• The system demonstrates robustness to controlled lighting changes
typical of indoor environments, basically due to the high accuracy
of visual detectors in the scientific community. It is achieved
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through data augmentation techniques introducing variations in
color, lighting conditions, and contrast.

As a limitation, the algorithm has been designed for environments
onsisting of corridors or narrow areas, with a maximum width of
round 4 m in our experiments. However, the approach is not con-
trained by the width of corridors. The estimation of objects on each
dge is only limited by the maximum distance range (approximately
0 m) of our RGB-D camera model and its field of view. In future
ork, we plan to extend our approach to large indoor spaces away

rom a layout based on sections or corridors. For larger spaces, we
ill introduce the concept of ‘Open-Space node’, which will require
different treatment for localization. Additionally, even with people

resent, we have assumed that the world is static in this paper; extend-
ng to non-stationary environments still presents a significant challenge.
s a result, opening and closing doors will, respectively, create and
emove routes, which will cause typology changes in the nodes of the
opological map.
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